Chinese Chemical Letters Vol. 16, No. 8, pp 1021-1023, 2005 http://www.imm.ac.cn/journal/ccl.html

Synthesis of Amphiphilic Hepatocyte Targeting Cholesterylated Thiogalactosides

Li HAI, Xun SUN, Zhi Rong ZHANG, Yu LUO, Yong WU*

West China School of Pharmacy, Sichuan University, Chengdu 610041

Abstract: Six amphiphilic cholesterylated thiogalactosides **1a-f** with high affinity for the asialoglycoprotein receptor have been synthesized by coupling 2,3,4,6-tetra -*O*-acetyl-1-thio- β -D-galactopyranose **8** with prepared cholesterol derivatives **7a-f**, then by deacetylating. Preliminary results show liposomes containing those galactosides derivatives exhibited higher affinity and transfection activity in hepatoma cells HepG2 and SMMC-7721.

Keywords: Hepatocyte target, cholesterylated thiogalactosides, synthesis.

During the last decade, gene transfer to hepatocytes has become a great potential therapeutics since hepatocytes are responsible for the synthesis of a wide variety of proteins¹. There has been much interest in efficient gene delivery to hepatocytes in vitro and in vivo. Among the possible delivery approaches, liposomes are considered to be a viable option. Hara et al. demonstrated that asiaplofetuin-labeled liposomal carriers encapsulating plasmid DNA are effective in gene expression². In addition, asialoglycoprotein receptor is uniquely localized on the parenchymal liver cell and recognizes glycoproteins containing terminal β -D-galactosyl or 2-acetamido-2-deoxy- β -D-galactopyranose residues³. Kawakami et al. prepared liposomal gene carriers possessing the cationic charge necessary for plasmid DNA binding and galactose residues as a targetable ligand of liver parenchymal cells, which can be efficiently recognized by asialoglycoprotein receptors⁴. To date, howover, synthetic galactosides have been optimized with respect to their branching pattern in order to accomplish high affinity binding to the asialoglycoprotein receptor⁵. The effect of a variation in distance between the sugar moieties and lipophilic moieties is rather unexplored. In our protocol, we therefore wish to synthesis several different spacer cholesterylated thiogalactosides 1a-f (Figure1) coupled by ether-linker containing ethylene glycol units. These derivatives possess bifunctional proterties *i.e.* lipophilic steriod for inserting into the liposome membrane that encapsulat plasmid DNA via electrostation interaction and a hydrophilic galactose residue outside the membrane for targeting the asialoglycoprotein receptor in hepatocytes.

The synthesis route of the cholesterylated thiogalactosides**1a-f** started from diol **2** as outlined in **Scheme 1**. Alcohol **2** was mesylated to get mesylate **3**, which was coupled

^{*} E-mail: pro_wuy_2002@sohu.com

Reagents and conditions: a) MsCl, Et_3N , THF, r.t., 92%; b) NaH, THF, 40-60°C, 30-40%; c) NaH, THF, DMSO, 40-60°C, 30-40%; d) MsCl, Et_3N , THF, r.t., 80-85%; e) Nal, butanone, reflux, 70-85%.

with cholesterol **4** using NaH in THF and DMSO to give **5a-c**. In similar, **5b** and **2a**, **5c** and **2a** or **5c** and **2b** was condensed to afford different spacer alcohol **6a-c** respectively. Then alcohol **6a-c** was mesylated by methylsulfonyl chloride in triethylamine and THF to afford mesylate **5d-f**. The series of different spacer mesylate was treat with NaI in butanone directly converted into iodide **7a-f**.

The iodide **7a-f** were coupled with 2, 3, 4, 6-tetra-*O*-acetyl-1-thio- β -D-galactopyranose **8**^{6,7} in the presence of DIPEA to produce **9a-f**. After deacetylation of **9a-f** by treatment with MeONa in MeOH, the title compounds **1a-f**⁸ were obtained (**Scheme 2**).

Liposomes-DNA complexes containing galactosylated cholesterols **1a-f** were tested for their ability to deliver β -galactosidase plasmid into hepatoma cells HepG2 and SMMC-7721. Preliminary results show they exhibited higher transfection activity in both cells compared with non-galactosylated liposomes-DNA complexes.

reagents and conditions: a)DIPEA, butanone, r.t., 75-85%; b) MeONa, MeOH, r.t., 65-85%.

In summary, we synthesized novel galactosylated cholesterol derivatives **1a-f** for developing the targetable hepatocyte liposomal carriers. In hepatoma cells HepG2 and SMMC-7721, these liposomes exhibited higher transfection activity. The results will be report elsewhere.

Acknowledgments

This work was funded by the National High Technology Research and Development Program of China (863 program, No. 2001AA218021).

References and Notes

- 1. M. Grossman, S. E. Raper, K. Kozaraky, et al., Nature Genet, 1994, 6, 335.
- 2. T. Hara, Y. Aramaki, S. Takada, K. Koike, et al., Gene, 1995, 159, 167.
- 3. M. Spies, Biochemistry, 1990, 29, 10009.
- 4. S. Kawakami, F. Yamashita, M. Nishikawa, et al, Biochem. Biophys. Res. Commun, 1998, 252, 78.
- 5. A. Krebs, W. T. Depew, W. A. Szarek, et al, Carbohydr. Res., 1994, 254, 257.
- 6. S. Chipowsky, Y. C. Lee, Carbohydr. Res., 1973, 31, 339.
- 7. H. C. P. F. Roelen, M. K. Bijsterbosch, H. F. Bakkeren, et al., J. Med. Chem., 1991, 34, 1036.
- 8. All the compounds were characterized by ¹H NMR, IR, MS spectral data and elemental analysis. Selected analytical data of **1c**: ¹H NMR (400 MHz, CD₃OD, δ ppm): 5.36(dd, 1H, J=3.6, 5.2Hz), 4.59(s, 2H), 4.34(d, 1H, J=9.6Hz), 3.86(dd, 1H, J₁=2.4, 3.2Hz), 3.75-3.66(m, 5H), 3.65-3.59(m, 10H), 3.52(m, 2H), 3.45(dd, 1H, J=3.6, 4.8Hz), 3.19(m, 1H), 2.93(dt, 1H, J=6.4, 13.6Hz), 2.81(dt, 1H, J=6.5, 13.9Hz), 2.36(m, 1H), 2.16(m, 1H), 2.03(m, 1H), 1.99-1.93(m, 1H), 1.90-1.80(m, 2H), 1.64-1.04(m, 22H), 1.01(s, 3H), 0.93(d, 3H, J=6.8Hz), 0.88(d, 3H, J=1.6Hz), 0.86(d, 3H, J=1.2Hz), 0.71(s, 3H); IR(KBr): v 3387, 2931, 1671, 1378, 1077, 1045 cm⁻¹; MS: *m/z* 723(M⁺-18); Anal. Calcd. For C₄₁H₇₂O₉S: C, 66.45; H, 9.79; S, 4.33; Found: C, 66.33; H, 10.02; S, 4.31; [α]₂₀²⁰ = -45.0(c 0.1, CHCl₃).

Received 6 September, 2004